Cyber-Physical On-Site Construction Processes using a Spider Crane Robotic Platform

Research Project 16-2 (RP 16-2)

CYBER-PHYSICAL ON-SITE CONSTRUCTION PROCESSES USING A SPIDER CRANE ROBOTIC PLATFORM

This project will focus on the robotic assembly of form-fit timber building systems developed at IntCDC. These include the FIT pavilion and the multi-storey building system of research project RP 3-1, which can be used to add floors to existing buildings due to their light weight. By automating time-consuming tasks using our spider crane cyber-physical construction platform, we will address the shortage of skilled workers and increase construction speed. This robotic system must be able to coordinate its own movements on site to pick up and assemble a variety of building components. We will therefore develop an absolute tracking and positioning system using the camera modules of the image-assisted total stations (IATSs) and image-processing techniques. It will automatically recognise the target building component and continuously estimate its position and orientation without prisms or other markers.

We will use this high-quality visual pose estimation system to investigate processes ranging from smart teleoperation to fully autonomous control, including haptic feedback, automation of time-consuming tasks, force control, trajectory generation in contact situations, and machine-machine collaboration. As high contact forces can damage the manipulator and the manipulated object, we will characterise the possible contact situations and develop an accurate real-time haptic perception system based on data from teleoperated assembly of form-fit timber parts.

For increased safety and efficiency, our smart teleoperation system will enable the operator to feel steady-state interaction forces and/or torques, as well as digital guidance to the desired component pose. It will also allow the operator to record brief actions that can then be autonomously repeated through task-parameterised movement learning.

During autonomous assembly, the pose data from the IATSs and the predicted interaction forces are used to generate trajectories and parameterise the controller according to the different interaction situations. We will then investigate collaborative assembly between the tower crane and the spider crane. This configuration advantageously combines the high payload capacity of the tower crane with the positioning accuracy of the spider crane. To close the loop from automated fabrication to automated assembly, we will also work on pick-up strategies of an autonomous mobile robot (AMR) that transports the components from the prefabrication platform to the construction site.

 
PRINCIPAL INVESTIGATOR

Dr. Katherine J. Kuchenbecker
Haptic Intelligence Department (MPI HI), Max Planck Institute for Intelligent Systems
Prof. Dr.-Ing. Dr. h.c. Oliver Sawodny
Institute for System Dynamics (ISYS), University of Stuttgart
Prof. Dr.-Ing. habil. Volker Schwieger
Institute of Engineering Geodesy (IIGS), University of Stuttgart

TEAM

Dr. Bernard Javot (MPI)
Dr.-Ing. Gabriel Kerekes (IIGS)
Yijie Gong (MPI)
Anja Lauer (ISYS)
Lyudmila Gorokhova (IIGS)
Mayumi Mohan (MPI)
Naomi Tashiro (MPI)
Philipp Wasserloos (ISYS)
Philipp Arnold (ISYS)

 

PEER-REVIEWED PUBLICATIONS

  1. 2024

    1. Gienger, A., Stein, C., Lauer, A. P. R., Sawodny, O., & Tarín, C. (2024). Data-Based Reachability Analysis and Optimized Robot Positioning for Co-Design of Construction Processes. 2024 IEEE/SICE International Symposium on System Integration (SII).
    2. Gong, Y., Mat Husin, H., Erol, E., Ortenzi, V., & Kuchenbecker, K. J. (2024). AiroTouch: enhancing telerobotic assembly through naturalistic haptic feedback of tool vibrations. Frontiers in Robotics and AI, 11. https://doi.org/10.3389/frobt.2024.1355205
    3. Herschel, M., Gienger, A., Lauer, A. P. R., Stein, C., Skoury, L., Lässig, N., Ellwein, C., Verl, A., Wortmann, T., & Tarin Sauer, C. (2024). Putting Co-Design-Supporting Data Lakes to the Test: An Evaluation on AEC Case Studies. International Conference on Big Data Analytics and Knowledge Discovery (DAWAK).
    4. Mohan, M., Nunez, C. M., & Kuchenbecker, K. J. (2024). Closing the Loop in Minimally Supervised Human-Robot Interaction: Formative and Summative Feedback. Scientific Reports, 14(10564), Article 10564. https://doi.org/10.1038/s41598-024-60905-x
    5. Opgenorth, N., Cheng, T., Lauer, P. R. A., Stark, T., Tahouni, Y., Treml, S., Göbel, M., Kiesewetter, L., Schlopschnat, C., Zorn, M. B., Yang, X., Amtsberg, F., Wagner, H. J., Wood, D., Sawodny, O., Wortmann, T., & Menges, A. (2024). Multi-scalar computational fabrication and construction of bio-based building envelopes – the livMatS biomimetic shell. Fabricate 2024: Creating Resourceful Futures, 22–31. https://doi.org/10.2307/jj.11374766.7
    6. Zhang, R., Xu, X., Liu, K., Kong, L., Wang, W., & Wortmann, T. (2024). Airflow modelling for building design: A designers’ review. Renewable and Sustainable Energy Reviews, 197, 114380. https://doi.org/10.1016/j.rser.2024.114380
  2. 2023

    1. Gong, Y., Javot, B., Lauer, A. P. R., Sawodny, O., & Kuchenbecker, K. J. (2023). Naturalistic Vibrotactile Feedback Could Facilitate Telerobotic Assembly on Construction Sites. In 2023 IEEE World Haptics Conference Committee (Ed.), 2023 IEEE World Haptics Conference (WHC) (pp. 169–175). https://doi.org/10.1109/WHC56415.2023.10224499
    2. Lauer, A. P. R., Benner, E., Stark, T., Klassen, S., Abolhasani, S., Schroth, L., Gienger, A., Wagner, H. J., Schwieger, V., Menges, A., & Sawodny, O. (2023). Automated on-site assembly of timber buildings on the example of a biomimetic shell. Automation in Construction, 156, 105118. https://doi.org/10.1016/j.autcon.2023.105118
    3. Lauer, A. P. R., Lerke, O., Blagojevic, B., Schwieger, V., & Sawodny, O. (2023). Tool center point control of a large-scale manipulator using absolute position feedback. Control Engineering Practice, 131, 105388. https://doi.org/10.1016/j.conengprac.2022.105388
    4. Lauer, A. P. R., Lerke, O., Gienger, A., Schwieger, V., & Sawodny, O. (2023). State Estimation with Static Displacement Compensation for Large-Scale Manipulators. SII Atlanta. https://doi.org/10.1109/SII55687.2023.10039134
    5. Lauer, A. P. R., Schürmann, T., Gienger, A., & Sawodny, O. (2023). Force-Controlled On-Site Assembly using Pose-Dependent Stiffness of Large-Scale Manipulators. 2023 IEEE 19th International Conference on Automation Science and Engineering (CASE), 1–6. https://doi.org/10.1109/CASE56687.2023.10260343
    6. Müller, B., Densborn, S., Kübel, J., & Sawodny, O. (2023). Smooth Path Planning for Redundant Large-Scale Robots using Measured Reference Points. IFAC-PapersOnLine, 56(2), Article 2. https://doi.org/10.1016/j.ifacol.2023.10.1586
    7. Oberdorfer, M., Schroeter, S., & Sawodny, O. (2023). Adaptive feedforward control using a gaussian process and a recursive least squares algorithm for a hydraulic axial piston pump. 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 329–334. https://doi.org/10.1109/AIM46323.2023.10196278
  3. 2022

    1. Burns, R. B., Lee, H., Seifi, H., Faulkner, R., & Kuchenbecker, K. J. (2022). Endowing a NAO Robot With Practical Social-Touch Perception. Frontiers in Robotics and AI, 9. https://doi.org/10.3389/frobt.2022.840335
    2. Oberdorfer, M., & Sawodny, O. (2022). Modeling and flatness based feedforward control of a hydraulic axial piston pump. 2022 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 540–545. https://doi.org/10.1109/AIM52237.2022.9863384
    3. Ortenzi, V., Filipovica, M., Abdlkarim, D., Pardi, T., Takahashi, C., Wing, A. M., Di Luca, M., & Kuchenbecker, K. J. (2022). Robot, Pass Me the Tool: Handle Visibility Facilitates Task-oriented Handovers. 2022 17th ACM/IEEE International Conference on Human-Robot Interaction (HRI), 256–264. https://doi.org/10.1109/HRI53351.2022.9889546
    4. Parlapanis, C., Müller, D., Frontull, M., & Sawodny, O. (2022). Modeling of the Work Functionality of a Hydraulically Actuated Telescopic Handler. IFAC-PapersOnLine, 55(20), Article 20. https://doi.org/10.1016/j.ifacol.2022.09.104
    5. Parlapanis, C., Müller, D., Frontull, M., & Sawodny, O. (2022). Modeling the Driving Dynamics of a Hydraulic Construction Vehicle. IFAC-PapersOnLine, 55(27), Article 27. https://doi.org/10.1016/j.ifacol.2022.10.554
  4. 2021

    1. Abdlkarim, D., Ortenzi, V., Pardi, T., Filipovica, M., Wing, A. M., Kuchenbecker, K. J., & Di Luca, M. (2021). PrendoSim: Proxy-Hand-Based Robot Grasp Generator. Proceedings of the 18th International Conference on Informatics in Control, Automation and Robotics - ICINCO, 1, 60–68. https://doi.org/10.5220/0010549800600068
    2. Abdlkarim., D., Ortenzi., V., Pardi., T., Filipovica., M., Wing., A. M., Kuchenbecker., K. J., & Di Luca., M. (2021). PrendoSim: Proxy-Hand-Based Robot Grasp Generator. Proceedings of the 18th International Conference on Informatics in Control, Automation and Robotics - ICINCO, 60–68. https://doi.org/10.5220/0010549800600068
    3. Lauer, A. P. R., Blagojevic, B., Lerke, O., Schwieger, V., & Sawodny, O. (2021). Flexible Multibody System Model of a Spider Crane with two Extendable Booms. IECON 2021 - 47th Annual Conference of the IEEE Industrial Electronics Society. https://doi.org/10.1109/IECON48115.2021.9589471
    4. Lerke, O., & Schwieger, V. (2021). Analysis of a kinematic real-time robotic total station network for robot control. Journal of Applied Geodesy, 15(3), Article 3. https://doi.org/doi:10.1515/jag-2021-0016
    5. Oei, M., & Sawodny, O. (2021). Attitude estimation for ground vehicles using low-cost sensors with in-vehicle calibration. Proceedings of the Conference on Control Technology and Applications (CCTA), 26–31. https://doi.org/10.1109/CCTA48906.2021.9658775
    6. Rupp, M. T. M., Valder, R., Knoll, C., & Sawodny, O. (2021). Cascaded Time Delay Compensation and Sensor Data Fusion for Visual Servoing. 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 504–509. https://doi.org/10.1109/SMC52423.2021.9659177
  5. 2019

    1. Schwieger, V., Menges, A., Zhang, L., & Schwinn, T. (2019). Engineering Geodesy for Integrative Computational Design and Construction. Zeitschrift Für Geodäsie, Geoinformation Und Landmanagement (ZfV), 144(4), Article 4. https://doi.org/10.12902/zfv-0272-2019

OTHER PUBLICATIONS

  1. 2024

    1. Lauer, A. P. R. (2024). Automatisierte Vor-Ort-Montage von Holzbauteilen mittels zweier hydraulischer Großraummanipulatoren [Shaker Verlag, Düren]. In O. Sawodny (Ed.), Berichte aus dem Institut für Systemdynamik Universität Stuttgart (Vol. 75). http://dx.doi.org/10.18419/opus-13883
  2. 2023

    1. Mohan, M., & Kuchenbecker, K. J. (2023). OCRA: An Optimization-Based Customizable Retargeting Algorithm for Teleoperation. https://www.ais.uni-bonn.de/ICRA2023AvatarWS/contributions/ICRA_2023_Avatar_WS_Mohan.pdf
  3. 2022

    1. Schwieger, V., Zhang, L., Lerke, O., & Balangé, L. (2022). The Research Cluster Integrative Computational Design and Construction (IntCDC) – Current Engineering Geodetic Contribution. XXVII FIG Congress 2022, Warsaw, Poland.

DATA SETS

  1. 2023

    1. Gong, Y., Javot, B., Lauer, A. P. R., Sawodny, O., & Kuchenbecker, K. J. (2023). User Study Dataset for Understanding On-Site Construction Activities with Haptic Perception. Edmond. https://doi.org/10.17617/3.PAFGCA
  2. 2022

    1. Burns, R. B., Lee, H., Seifi, H., Faulkner, R., & Kuchenbecker, K. J. (2022). User Study Dataset for Endowing a NAO Robot with Practical Social-Touch Perception. Edmond. https://doi.org/10.17617/3.6w
    2. Burns, R. B., Lee, H., Seifi, H., Faulkner, R., & Kuchenbecker, K. J. (2022). Sensor Patterns Dataset for Endowing a NAO Robot with Practical Social-Touch Perception. Edmond. https://doi.org/10.17617/3.6x

    

To the top of the page