Multi-Storey Wood Building System

Research Project 3-1 (RP 3-1)

COMPUTATIONAL DESIGN, ENGINEERING AND DEVELOPMENT OF DIGITALLY FABRICATED MULTI-STOREY WOOD BUILDING SYSTEM

Current wood building systems are greatly dependent on rigid grids as an ordering system, resulting in severe design limitations for open-plan, flexible spaces and bespoke architectural solutions. The main aim of this project is to address these architectural limitations through the development of a novel, genuinely digital wood building system that will enable the adoption of prefabricated timber construction in additional building typologies. This will integrate computational design, engineering and building physics in close relationship with the respective fabrication strategies. The building system includes the design and development of structural components as well as building services, insulation and cladding. Key characteristics of the building systems we aim to achieve are grid independence, biaxial spans and pointwise concentrated supports. This presents challenges for the structure, building physics and building services. Through the Co-Design of these aspects, together with the development of new joint systems, this research project will integrate and run hand in hand with novel concepts of cyber-physical on- and off-site production (Research Project RP 4-1). In addition, it will consider the development of bio-based material systems (Research Project RP 6-1), adjustments and requirements of technical standards and legal frameworks (Reseach Project RP 7-1), and the consideration of novel design opportunities for IntCDC-based multi-storey timber buildings (Research Project RP 10-1).

PRINCIPAL INVESTIGATORS

Prof. Achim Menges
Institute for Computational Design and Construction (ICD), University of Stuttgart
Prof. Dr.-Ing. Jan Knippers
Institute for Building Structures and Structural Design(ITKE), University of Stuttgart
Prof. Dr.-Ing. Philip Leistner
Institute for Acoustics and Building Physics (IABP), University of Stuttgart
Prof. Dr.-Ing. Harald Garrecht with Dr. Simon Aicher
Materials Testing Institute (MPA), University of Stuttgart

TEAM

Dr.-Ing. Tobias Schwinn (ICD)
Nikolas Früh (ITKE)
Anna Krtschil (ITKE)
Theresa Müller (IABP)
Luis Orozco (ICD)
Holger Röseler (IABP)
Cristóbal Tapia Camú (MPA)
Hans Jakob Wagner (ICD)

PEER-REVIEWED PUBLICATIONS

  1. 2024

    1. Skoury, L., Treml, S., Opgenorth, N., Amtsberg, F., Wagner, H. J., Menges, A., & Wortmann, T. (2024). Towards data-informed co-design in digital fabrication. Automation in Construction, 158, 105229. https://doi.org/10.1016/j.autcon.2023.105229
    2. Müller, T., Krtschil, A., Mahler, M., Knippers, J., & Leistner, P. (2024). Structural and acoustic behavior of a timber slab with wooden tuned mass dampers. Journal of Low Frequency Noise, Vibration and Active Control, 17. https://doi.org/10.1177/14613484241286586
    3. Chai, H., Orozco, L., Kannenberg, F., Siriwardena, L., Schwinn, T., Liu, H., Menges, A., & Yuan, P. F. (2024). Agent-Based Principal Strips Modeling for Freeform Surfaces in Architecture. Nexus Network Journal, 26(2), Article 2. https://doi.org/10.1007/s00004-024-00765-0
    4. Asa, P., El Feghali, C., Steixner, C., Tahouni, Y., Wagner, H. J., Knippers, J., & Menges, A. (2024). Embraced Wood: Circular construction method for composite long-span beams from unprocessed reclaimed timber, fibers and clay. Construction and Building Materials, 416(January), Article January. https://doi.org/10.1016/j.conbuildmat.2024.135096
  2. 2023

    1. Udaykumar, K., Orozco, L., Krtschil, A., Menges, A., & Knippers, J. (2023). Interactive Gradient-Based Optimization Method for Column-slab Structures. In Y. M. Xie, J. Burry, T. U. Lee, & J. Ma (Eds.), Integration of Design and Fabrication (pp. 1574--1584). International Association for Shell and Spatial Structures (IASS).
    2. Tapia Camú, C., Wagner, H. J., Treml, S., Menges, A., & Aicher, S. (2023). Point-Support Reinforcement for a Highly Efficient Timber Hollow Core Slab System. World Conference on Timber Engineering (WCTE 2023), 2978–2986. https://doi.org/10.52202/069179-0388
    3. Tapia, C., & Aicher, S. (2023). A new concept for column-to-column connections for multi-storey timber buildings — Numerical and experimental investigations. Engineering Structures, 295, 116770. https://doi.org/10.1016/j.engstruct.2023.116770
    4. Svatoš-Ražnjević, H., Krtschil, A., Orozco, L., Neubauer, G., Knippers, J., & Menges, A. (2023). Towards Design Flexibility and Freedom In Multi-Storey Timber Construction: Architectural Applications of a Novel, Adaptive Hollow Slab Building System. In K. A. Malo, A. Q. Nyrud, & K. Nore (Eds.), World Conference on Timber Engineering (WCTE 2023) (pp. 3905--3916). World Conference on Timber Engineering (WCTE 2023). https://doi.org/10.52202/069179-0508
    5. Sahin, E. S., Locatelli, D., Orozco, L., Krtschil, A., Wagner, H. J., Menges, A., & Knippers, J. (2023). Feedback-Based Design Method for Spatially-Informed and Structurally-Performative Column Placement in Multi-Story Construction. In P. Yuan & N. Leach (Eds.), Phygital Intelligence.
    6. Orozco, L., Wagner, H. J., Krtschil, A., Knippers, J., & Menges, A. (2023). Computational Segmentation of Timber Slabs with Free Column Placement. Computer-Aided Design, 103650. https://doi.org/10.1016/j.cad.2023.103650
    7. Orozco, L., Svatoš-Ražnjević, H., Wagner, H. J., Abdelaal, M., Amtsberg, F., Weiskopf, D., & Menges, A. (2023). Advanced Timber Construction Industry: A Quantitative Review of 646 Global Design and Construction Stakeholders. Buildings, 13(9), Article 9. https://doi.org/10.3390/buildings13092287
    8. Orozco, L., Krtschil, A., Wagner, H. J., Bechert, S., Amtsberg, F., Knippers, J., & Menges, A. (2023). Co-Design Methods for Non-Standard Multi-Storey Timber Buildings. Sustainability, 15(23), Article 23. https://doi.org/10.3390/su152316178
    9. Müller, T., & Leistner, P. (2023). Ecologically motivated approaches for improving low-frequency sound and vibration performance in multistory timber buildings. Proceedings of the 10th Convention of the European Acoustics Association Forum Acusticum 2023. https://doi.org/10.61782/fa.2023.0522
    10. Krtschil, A., Orozco, L., Wagner, H. J., Menges, A., & Knippers, J. (2023). Structural Performance and Nesting Efficiency of segmented, point-supported, slabs for co-designed timber architecture. Structures, 57, 105260. https://doi.org/10.1016/j.istruc.2023.105260
    11. Bucklin, O., Müller, T., Amtsberg, F., Leistner, P., & Menges, A. (2023). Analysis of thermal Transmittance, air Permeability, and hygrothermal behavior of a solid timber building envelope. Energy and Buildings, 299, 113629. https://doi.org/10.1016/j.enbuild.2023.113629
    12. Aicher, S., Münzer, A., Hezel, J., & Weber, S. (2023). Head pull-through capacity of load-bearing timber screws – Influential parameters and shortcomings of European test procedure. Wood Material Science & Engineering, 18(4), Article 4. https://doi.org/10.1080/17480272.2022.2155994
  3. 2022

    1. Tapia, C., Claus, M., & Aicher, S. (2022). A finger-joint based edge connection for the weak direction of CLT plates. Construction and Building Materials, 340, 127645. https://doi.org/10.1016/j.conbuildmat.2022.127645
    2. Svatoš-Ražnjević, H., Orozco, L., & Menges, A. (2022). Advanced Timber Construction Industry: A Review of 350 Multi-Storey Timber Projects from 2000–2021. Buildings, 12(4), Article 4. https://doi.org/10.3390/buildings12040404
    3. Orozco, L., Krtschil, A., Skoury, L., Knippers, J., & Menges, A. (2022). Arrangement of reinforcement in variable density timber slab systems for multi-story construction. International Journal of Architectural Computing, 20(4), Article 4. https://doi.org/10.1177/14780771221135003
    4. Krtschil, A., Orozco, L., Wagner, H. J., Menges, A., & Knippers, J. (2022). Conceptual development and comparison of two punctually supported timber slab systems. Doktorandenkolloquium Holzbau Forschung + Praxis.
    5. Krtschil, A., Orozco, L., Bechert, S., Wagner, H. J., Amtsberg, F., Chen, T.-Y., Shah, A., Menges, A., & Knippers, J. (2022). Structural development of a novel punctually supported timber building system for multi-storey construction. Journal of Building Engineering, 58, 104972. https://doi.org/10.1016/j.jobe.2022.104972
    6. Chai, H., Wagner, H. J., Guo, Z., Qi, Y., Menges, A., & Yuan, P. F. (2022). Computational design and on-site mobile robotic construction of an adaptive reinforcement beam network for cross-laminated timber slab panels. Automation in Construction, 142(August), Article August. https://doi.org/10.1016/j.autcon.2022.104536
    7. Chai, H., Guo, Z., Wagner, H. J., Stark, T., Menges, A., & Yuan, P. F. (2022). In-Situ Robotic Fabrication of Spatial Glulam Structures. Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, 2, 41--50. https://doi.org/10.52842/conf.caadria.2022.2.041
  4. 2021

    1. Wagner, H. J., Garufi, D., Schwinn, T., Wood, D. M., & Menges, A. (2021). Three-Dimensional Fibre Placement in Wood for connections and reinforcements in timber structures. In S. A. Behnejad, G. A. R. Parke, & O. A. Samavati (Eds.), Proceedings of the IASS Annual Symposium 2020/21 and the 7th International Conference on Spatial Structures. IASS.
    2. Wagner, H. J., Aicher, S., Balangé, L., Basalla, U., Schwieger, V., & Menges, A. (2021). Qualities of the Unique: Accuracy and Process-Control Management in Project-based Robotic Timber Construction. World Conference on Timber Engineering 2021 - WCTE 2021.
    3. Tapia, C., Stimpfle, L., & Aicher, S. (2021, August). A scalable column-CLT-slab connection for open-plan high-rise timber buildings. Proceedings of WCTE 2021 - World Conference on Timber Engineering.
    4. Orozco, L., Krtschil, A., Wagner, H. J., Bechert, S., Amtsberg, F., Skoury, L., Knippers, J., & Menges, A. (2021). Design Methods for Variable Density, Multi-Directional Composite Timber Slab Systems for Multi-Storey. In V. Stojakovic & B. Tepavcevic (Eds.), Proceedings of the 39th eCAADe Conference (Vol. 1, pp. 303--312). Cumincad. http://papers.cumincad.org/cgi-bin/works/paper/ecaade2021_284
    5. Müller, T., Flemming, D., Janowsky, I., Di Bari, R., Harder, N., & Leistner, P. (2021). Bauphysikalische und ökologische Potenziale von Gebäuden in Holzbauweise. Bauphysik, 43(3), Article 3. https://doi.org/10.1002/bapi.202100011
    6. Müller, T., Borschewski, D., Albrecht, S., Leistner, P., & Späh, M. (2021). The Dilemma of Balancing Design for Impact Sound with Environmental Performance in Wood Ceiling Systems : A Building Physics Perspective. Sustainability, 13(16), Article 16. https://doi.org/10.3390/su13168715
    7. Aicher, S., & Simon, K. (2021). Rigid Glulam Joints with Glued-in Rods Subjected to Axial and Lateral Force Action. Proceedings of the International Network on Timber Engineering Research (INTER) – Meeting 54, 113–128.

OTHER PUBLICATIONS

  1. 2024

    1. Krtschil, A., Orozco, L., Shah, A., Chen, T.-Y., Menges, A., & Knippers, J. (2024). Replication Data for: Structural development of a novel punctually supported timber building system for multi-storey construction : Experimental Data: Tension Tests of the Edge Connection. https://doi.org/10.18419/darus-4166
    2. Müller, T., Krtschil, A., & Leistner, P. (2024). Replication Data for: Structural and acoustic behavior of a timber slab with wooden tuned mass dampers. DaRUS. https://doi.org/10.18419/darus-3995
    3. Orozco, L., Krtschil, A., Skoury, L., Knippers, J., & Menges, A. (2024). Reinforcement Arrangement Data. DaRUS. https://doi.org/10.18419/darus-4181
    4. Orozco, L., Siriwardena, L., & Menges, A. (2024). ABxM.MultiStorey.Columns: Agent-based Column Arrangement for Multi-Storey Structures. DaRUS. https://doi.org/10.18419/darus-4171
    5. Orozco, L., Skoury, L., & Menges, A. (2024). Multi-Level, Multi-Agent Timber Slab Design Method Proof of Concept. DaRUS. https://doi.org/10.18419/darus-4170
    6. Udaykumar, K., Orozco, L., Krtschil, A., Menges, A., & Knippers, J. (2024). Timber Column Slab Solver. DaRUS. https://doi.org/10.18419/darus-4172
  2. 2023

    1. Cristóbal, T. Camú., Amtsberg, F., Münzer, A., Aicher, S., & Menges, A. (2023). Rotational Stiffness of Newly Developed LVL-based Column-Head Reinforcement for Point-Supported Slab-Column Building Systems. World Conference on Timber Engineering (WCTE 2023), 688–697. https://doi.org/10.52202/069179-0094
    2. Orozco, L., Krtschil, A., Wagner, H.-J., Knippers, J., & Menges, A. (2023). Floor Plate Segmentation Data. DaRUS. https://doi.org/10.18419/darus-3539
    3. Orozco, L., Wagner, H. J., Krtschil, A., Knippers, J., & Menges, A. (2023). Computational Segmentation Methods for the Material Efficient Co-Design of Point-Supported, Grid-Independent Floor Slabs in Timber Architecture. https://doi.org/10.2139/ssrn.4484710
    4. Tapia Camu, C. A., & Aicher, S. (2023). Replication Data for: A new concept for column-to-column connections for multi-storey timber buildings - Numerical and experimental investigations. DaRUS. https://doi.org/10.18419/darus-3318
  3. 2022

    1. Abdelaal, M., Schiele, N. D., Angerbauer, K., Kurzhals, K., Sedlmair, M., & Weiskopf, D. (2022). Supplemental Materials for: Comparative Evaluation of Bipartite, Node-Link, and Matrix-Based Network Representations. DaRUS. https://doi.org/10.18419/DARUS-3100
    2. Müller, T., & Di Bari, R. (2022). Akustisches Verhalten von Holzgeschossdecken ökologisch neu gestalten. In Fortschritte der Akustik - DAGA 2022. Deutsche Gesellschaft für Akustik e.V. (DEGA).
    3. Müller, T., & Leistner, P. (2022). Integrative Ansätze zur Schwingungsreduzierung von Holzgeschossdecken. In Fortschritte der Akustik - DAGA 2022. Deutsche Gesellschaft für Akustik e.V. (DEGA).
    4. Nguyen, L., Schwinn, T., Groenewolt, A., Maierhofer, M., Zorn, M. B., Stieler, D., Siriwardena, L., Kannenberg, F., & Menges, A. (2022). ABxM.Core: The Core Libraries of the ABxM Framework. https://doi.org/10.18419/darus-2994
    5. Orozco, L., Svatoš-Ražnjević, H., & Menges, A. (2022). Stakeholders in Multi-storey Timber Data: 540 Design and Construction Players of 300 Mass-Timber Projects from 2000-2021. DaRUS. https://doi.org/10.18419/DARUS-2740
    6. Tapia Camu, C. A., & Claus, M. (2022). Replication Models for: A finger-joint based edge connection for the weak direction of CLT plates. https://doi.org/10.18419/darus-1259
    7. Wagner, H. J. (2022). Digitale Fabrikation: Was bringt uns die Zukunft? In 2. Internationaler Kongress Holzbau: Technik+Wirtschaft (HTW) (pp. 91--102). FORUM HOLZBAU.
  4. 2021

    1. Aicher, S., Zisi, N., & Simon, K. (2021). Screw-gluing of ribbed timber elements – Effects of screw spacing and plate stiffness on bond line cramping pressure. In Otto Graf Journal (Vol. 20, pp. 9–38). Otto-Graf-Institute (FMPA), University of Stuttgart. https://www.mpa.uni-stuttgart.de/institut/publikationen/otto-graf-journal/
    2. Claus, M., Tapia, C., & Aicher, S. (2021). Bond line characteristics of new edge connections of cross-laminated timber in the weak direction based on milled profiled connection plates from laminated veneer lumber made of beech. Otto Graf Journal, 20, 39--60.
    3. Tapia Camú, C., & Claus, M. (2021). Experimental data for: A finger-joint based edge connection for the weak direction of CLT plates. DaRUS. https://doi.org/10.18419/darus-1344
    4. Tapia Camú, C., Claus, M., & Aicher, S. (2021). Replication Data for: Bond line characteristics of a new screw-glued edge connection for the secondary load-bearing direction of CLT plates. https://doi.org/10.18419/darus-2153
  5. 2020

    1. Stimpfle, L. (2020). Skalierbarer Stützen-Decken-Anschluss mit eingeklebten Furnierschichtholz-Verstärkungen für mehrgeschossige Holzbauten --- Detaillierung, Berechnung, Versuche.
    2. Tapia, C., Stimpfle, L., & Aicher, S. (2020). A new column-to-slab connection for multi-storey timber buildings. Otto Graf Journal, 19, 297--317.

DATA SETS

  1. 2024

    1. Krtschil, A., Orozco, L., Shah, A., Chen, T.-Y., Menges, A., & Knippers, J. (2024). Replication Data for: Structural development of a novel punctually supported timber building system for multi-storey construction : Experimental Data: Tension Tests of the Edge Connection. https://doi.org/10.18419/darus-4166
    2. Müller, T., Krtschil, A., & Leistner, P. (2024). Replication Data for: Structural and acoustic behavior of a timber slab with wooden tuned mass dampers. DaRUS. https://doi.org/10.18419/darus-3995
    3. Orozco, L., Krtschil, A., Skoury, L., Knippers, J., & Menges, A. (2024). Reinforcement Arrangement Data. DaRUS. https://doi.org/10.18419/darus-4181
    4. Orozco, L., Siriwardena, L., & Menges, A. (2024). ABxM.MultiStorey.Columns: Agent-based Column Arrangement for Multi-Storey Structures. DaRUS. https://doi.org/10.18419/darus-4171
    5. Orozco, L., Skoury, L., & Menges, A. (2024). Multi-Level, Multi-Agent Timber Slab Design Method Proof of Concept. DaRUS. https://doi.org/10.18419/darus-4170
    6. Udaykumar, K., Orozco, L., Krtschil, A., Menges, A., & Knippers, J. (2024). Timber Column Slab Solver. DaRUS. https://doi.org/10.18419/darus-4172
  2. 2023

    1. Orozco, L., Krtschil, A., Wagner, H.-J., Knippers, J., & Menges, A. (2023). Floor Plate Segmentation Data. DaRUS. https://doi.org/10.18419/darus-3539
    2. Tapia Camu, C. A., & Aicher, S. (2023). Replication Data for: A new concept for column-to-column connections for multi-storey timber buildings - Numerical and experimental investigations. DaRUS. https://doi.org/10.18419/darus-3318
  3. 2022

    1. Abdelaal, M., Schiele, N. D., Angerbauer, K., Kurzhals, K., Sedlmair, M., & Weiskopf, D. (2022). Supplemental Materials for: Comparative Evaluation of Bipartite, Node-Link, and Matrix-Based Network Representations. DaRUS. https://doi.org/10.18419/DARUS-3100
    2. Nguyen, L., Schwinn, T., Groenewolt, A., Maierhofer, M., Zorn, M. B., Stieler, D., Siriwardena, L., Kannenberg, F., & Menges, A. (2022). ABxM.Core: The Core Libraries of the ABxM Framework. https://doi.org/10.18419/darus-2994
    3. Orozco, L., Svatoš-Ražnjević, H., & Menges, A. (2022). Stakeholders in Multi-storey Timber Data: 540 Design and Construction Players of 300 Mass-Timber Projects from 2000-2021. DaRUS. https://doi.org/10.18419/DARUS-2740
    4. Tapia Camu, C. A., & Claus, M. (2022). Replication Models for: A finger-joint based edge connection for the weak direction of CLT plates. https://doi.org/10.18419/darus-1259
  4. 2021

    1. Tapia Camú, C., & Claus, M. (2021). Experimental data for: A finger-joint based edge connection for the weak direction of CLT plates. DaRUS. https://doi.org/10.18419/darus-1344
    2. Tapia Camú, C., Claus, M., & Aicher, S. (2021). Replication Data for: Bond line characteristics of a new screw-glued edge connection for the secondary load-bearing direction of CLT plates. https://doi.org/10.18419/darus-2153

    

To the top of the page