CO-DESIGN, ADAPTATION, INTEGRATION AND OPTIMISATION OF MULTI-STOREY WOOD BUILDING SYSTEMS FOR BUILDING STOCK EXTENSION
Achieving the sustainable development goals defined by the United Nations requires innovation and commitment from all industries. For the building sector, this means adopting more cost- and energy-efficient methods, reducing material waste and increasing the use of CO2-neutral materials such as timber. This can be achieved through the development of Co-Design methods that integrate architectural, structural and building physics criteria in feedback with novel fabrication and construction capabilities in order to articulate timber building systems that overcome the typical limitations of multi-storey timber structures. Such quasi mono-material and future-proof wood building systems are based on standard timber materials (e.g. GLT or CLT) and offer open-purpose, multifunctional and geometrically bespoke column, wall and ceiling elements, thus achieving biaxial, variable-span and structurally optimised, resource-efficient solutions using on-site/off-site additive and subtractive manufacturing processes. This would enable independence from the typically constraining rigid grid ordering systems and foster new timber architectural typologies that are also attractive for long-term use by being adaptable and flexibly programmable.
Based on the findings of the predecessor Research Project RP 3-1, this project will address the next set of research challenges for the Co-Design methods and multi-storey timber building system developments by:
- Expanding the design space of the system towards the extension of the existing building stock by investigating and integrating design adaptation methods and flexible strategies for establishing performative interfaces with existing structures.
- Investigating the potential for replacing remaining non-timber building system elements with wood-based solutions, thereby facilitating the integration of additional building elements into the existing building system, such as lateral bracing. This will include the investigation of bonded joints for energy dissipation capabilities and fire/high temperature resistance.
- We will also extend the interdisciplinary modelling methods to other relevant parameters (e.g. fire resistance) and investigate multi-parameter optimisation methods and design frameworks beyond those developed in RP 3-1.
- Finally, the research will establish a coordinated interdisciplinary project development process and a coherent computational design and engineering model through continuous synthesis. The resulting novel building system and methods will be demonstrated and evaluated through the building elements in the IntCDC demonstrator building. In parallel, we will evaluate the building stock extension method through benchmark and synthesis studies.
PRINCIPAL INVESTIGATORS
Prof. Achim Menges
Institute for Computational Design and Construction (ICD), University of Stuttgart
Prof. Dr.-Ing. Jan Knippers
Institute for Building Structures and Structural Design (ITKE), University of Stuttgart
Prof. Dr.-Ing. Philip Leistner
Institute for Acoustics and Building Physics (IABP), University of Stuttgart
Prof. Dr.-Ing. Harald Garrecht with Dr. Simon Aicher
Materials Testing Institute (MPA), University of Stuttgart
TEAM
Theresa Müller (IABP)
Luis Orozco (ICD)
Nils Opgenorth (ICD)
Cristóbal Tapia Camú (MPA)
Hans Jakob Wagner (ICD)
Lorenz Riedel (ITKE)
Simon Treml (ICD)
PEER-REVIEWED PUBLICATIONS
2024
- Asa, P., El Feghali, C., Steixner, C., Tahouni, Y., Wagner, H. J., Knippers, J., & Menges, A. (2024). Embraced Wood: Circular construction method for composite long-span beams from unprocessed reclaimed timber, fibers and clay. Construction and Building Materials, 416(January), Article January. https://doi.org/10.1016/j.conbuildmat.2024.135096
- Chai, H., Orozco, L., Kannenberg, F., Siriwardena, L., Schwinn, T., Liu, H., Menges, A., & Yuan, P. F. (2024). Agent-Based Principal Strips Modeling for Freeform Surfaces in Architecture. Nexus Network Journal, 26(2), Article 2. https://doi.org/10.1007/s00004-024-00765-0
- Müller, T., Krtschil, A., Mahler, M., Knippers, J., & Leistner, P. (2024). Structural and acoustic behavior of a timber slab with wooden tuned mass dampers. Journal of Low Frequency Noise, Vibration and Active Control, 17. https://doi.org/10.1177/14613484241286586
- Skoury, L., Treml, S., Opgenorth, N., Amtsberg, F., Wagner, H. J., Menges, A., & Wortmann, T. (2024). Towards data-informed co-design in digital fabrication. Automation in Construction, 158, 105229. https://doi.org/10.1016/j.autcon.2023.105229
2023
- Aicher, S., Münzer, A., Hezel, J., & Weber, S. (2023). Head pull-through capacity of load-bearing timber screws – Influential parameters and shortcomings of European test procedure. Wood Material Science & Engineering, 18(4), Article 4. https://doi.org/10.1080/17480272.2022.2155994
- Bucklin, O., Müller, T., Amtsberg, F., Leistner, P., & Menges, A. (2023). Analysis of thermal Transmittance, air Permeability, and hygrothermal behavior of a solid timber building envelope. Energy and Buildings, 299, 113629. https://doi.org/10.1016/j.enbuild.2023.113629
- Krtschil, A., Orozco, L., Wagner, H. J., Menges, A., & Knippers, J. (2023). Structural Performance and Nesting Efficiency of segmented, point-supported, slabs for co-designed timber architecture. Structures, 57, 105260. https://doi.org/10.1016/j.istruc.2023.105260
- Müller, T., & Leistner, P. (2023). Ecologically motivated approaches for improving low-frequency sound and vibration performance in multistory timber buildings. Proceedings of the 10th Convention of the European Acoustics Association Forum Acusticum 2023. https://doi.org/10.61782/fa.2023.0522
- Orozco, L., Krtschil, A., Wagner, H. J., Bechert, S., Amtsberg, F., Knippers, J., & Menges, A. (2023). Co-Design Methods for Non-Standard Multi-Storey Timber Buildings. Sustainability, 15(23), Article 23. https://doi.org/10.3390/su152316178
- Orozco, L., Svatoš-Ražnjević, H., Wagner, H. J., Abdelaal, M., Amtsberg, F., Weiskopf, D., & Menges, A. (2023). Advanced Timber Construction Industry: A Quantitative Review of 646 Global Design and Construction Stakeholders. Buildings, 13(9), Article 9. https://doi.org/10.3390/buildings13092287
- Orozco, L., Wagner, H. J., Krtschil, A., Knippers, J., & Menges, A. (2023). Computational Segmentation of Timber Slabs with Free Column Placement. Computer-Aided Design, 103650. https://doi.org/10.1016/j.cad.2023.103650
- Sahin, E. S., Locatelli, D., Orozco, L., Krtschil, A., Wagner, H. J., Menges, A., & Knippers, J. (2023). Feedback-Based Design Method for Spatially-Informed and Structurally-Performative Column Placement in Multi-Story Construction. In P. Yuan & N. Leach (Eds.), Phygital Intelligence.
- Svatoš-Ražnjević, H., Krtschil, A., Orozco, L., Neubauer, G., Knippers, J., & Menges, A. (2023). Towards Design Flexibility and Freedom In Multi-Storey Timber Construction: Architectural Applications of a Novel, Adaptive Hollow Slab Building System. In K. A. Malo, A. Q. Nyrud, & K. Nore (Eds.), World Conference on Timber Engineering (WCTE 2023) (pp. 3905--3916). World Conference on Timber Engineering (WCTE 2023). https://doi.org/10.52202/069179-0508
- Tapia, C., & Aicher, S. (2023). A new concept for column-to-column connections for multi-storey timber buildings — Numerical and experimental investigations. Engineering Structures, 295, 116770. https://doi.org/10.1016/j.engstruct.2023.116770
- Tapia Camú, C., Wagner, H. J., Treml, S., Menges, A., & Aicher, S. (2023). Point-Support Reinforcement for a Highly Efficient Timber Hollow Core Slab System. World Conference on Timber Engineering (WCTE 2023), 2978–2986. https://doi.org/10.52202/069179-0388
- Udaykumar, K., Orozco, L., Krtschil, A., Menges, A., & Knippers, J. (2023). Interactive Gradient-Based Optimization Method for Column-slab Structures. In Y. M. Xie, J. Burry, T. U. Lee, & J. Ma (Eds.), Integration of Design and Fabrication (pp. 1574--1584). International Association for Shell and Spatial Structures (IASS).
2022
- Chai, H., Guo, Z., Wagner, H. J., Stark, T., Menges, A., & Yuan, P. F. (2022). In-Situ Robotic Fabrication of Spatial Glulam Structures. Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, 2, 41--50. https://doi.org/10.52842/conf.caadria.2022.2.041
- Chai, H., Wagner, H. J., Guo, Z., Qi, Y., Menges, A., & Yuan, P. F. (2022). Computational design and on-site mobile robotic construction of an adaptive reinforcement beam network for cross-laminated timber slab panels. Automation in Construction, 142(August), Article August. https://doi.org/10.1016/j.autcon.2022.104536
- Krtschil, A., Orozco, L., Bechert, S., Wagner, H. J., Amtsberg, F., Chen, T.-Y., Shah, A., Menges, A., & Knippers, J. (2022). Structural development of a novel punctually supported timber building system for multi-storey construction. Journal of Building Engineering, 58, 104972. https://doi.org/10.1016/j.jobe.2022.104972
- Krtschil, A., Orozco, L., Wagner, H. J., Menges, A., & Knippers, J. (2022). Conceptual development and comparison of two punctually supported timber slab systems. Doktorandenkolloquium Holzbau Forschung + Praxis.
- Orozco, L., Krtschil, A., Skoury, L., Knippers, J., & Menges, A. (2022). Arrangement of reinforcement in variable density timber slab systems for multi-story construction. International Journal of Architectural Computing, 20(4), Article 4. https://doi.org/10.1177/14780771221135003
- Svatoš-Ražnjević, H., Orozco, L., & Menges, A. (2022). Advanced Timber Construction Industry: A Review of 350 Multi-Storey Timber Projects from 2000–2021. Buildings, 12(4), Article 4. https://doi.org/10.3390/buildings12040404
- Tapia, C., Claus, M., & Aicher, S. (2022). A finger-joint based edge connection for the weak direction of CLT plates. Construction and Building Materials, 340, 127645. https://doi.org/10.1016/j.conbuildmat.2022.127645
2021
- Aicher, S., & Simon, K. (2021). Rigid Glulam Joints with Glued-in Rods Subjected to Axial and Lateral Force Action. Proceedings of the International Network on Timber Engineering Research (INTER) – Meeting 54, 113–128.
- Müller, T., Borschewski, D., Albrecht, S., Leistner, P., & Späh, M. (2021). The Dilemma of Balancing Design for Impact Sound with Environmental Performance in Wood Ceiling Systems : A Building Physics Perspective. Sustainability, 13(16), Article 16. https://doi.org/10.3390/su13168715
- Müller, T., Flemming, D., Janowsky, I., Di Bari, R., Harder, N., & Leistner, P. (2021). Bauphysikalische und ökologische Potenziale von Gebäuden in Holzbauweise. Bauphysik, 43(3), Article 3. https://doi.org/10.1002/bapi.202100011
- Orozco, L., Krtschil, A., Wagner, H. J., Bechert, S., Amtsberg, F., Skoury, L., Knippers, J., & Menges, A. (2021). Design Methods for Variable Density, Multi-Directional Composite Timber Slab Systems for Multi-Storey. In V. Stojakovic & B. Tepavcevic (Eds.), Proceedings of the 39th eCAADe Conference (Vol. 1, pp. 303--312). Cumincad. http://papers.cumincad.org/cgi-bin/works/paper/ecaade2021_284
- Tapia, C., Stimpfle, L., & Aicher, S. (2021). A scalable column-CLT-slab connection for open-plan high-rise timber buildings. Proceedings of WCTE 2021 - World Conference on Timber Engineering.
- Wagner, H. J., Aicher, S., Balangé, L., Basalla, U., Schwieger, V., & Menges, A. (2021). Qualities of the Unique: Accuracy and Process-Control Management in Project-based Robotic Timber Construction. World Conference on Timber Engineering 2021 - WCTE 2021.
- Wagner, H. J., Garufi, D., Schwinn, T., Wood, D. M., & Menges, A. (2021). Three-Dimensional Fibre Placement in Wood for connections and reinforcements in timber structures. In S. A. Behnejad, G. A. R. Parke, & O. A. Samavati (Eds.), Proceedings of the IASS Annual Symposium 2020/21 and the 7th International Conference on Spatial Structures. IASS.
OTHER PUBLICATIONS
2023
- Cristóbal, T. Camú., Amtsberg, F., Münzer, A., Aicher, S., & Menges, A. (2023). Rotational Stiffness of Newly Developed LVL-based Column-Head Reinforcement for Point-Supported Slab-Column Building Systems. World Conference on Timber Engineering (WCTE 2023), 688–697. https://doi.org/10.52202/069179-0094
- Orozco, L., Wagner, H. J., Krtschil, A., Knippers, J., & Menges, A. (2023). Computational Segmentation Methods for the Material Efficient Co-Design of Point-Supported, Grid-Independent Floor Slabs in Timber Architecture. https://doi.org/10.2139/ssrn.4484710
2022
- Müller, T., & Di Bari, R. (2022). Akustisches Verhalten von Holzgeschossdecken ökologisch neu gestalten. In Fortschritte der Akustik - DAGA 2022. Deutsche Gesellschaft für Akustik e.V. (DEGA).
- Müller, T., & Leistner, P. (2022). Integrative Ansätze zur Schwingungsreduzierung von Holzgeschossdecken. In Fortschritte der Akustik - DAGA 2022. Deutsche Gesellschaft für Akustik e.V. (DEGA).
- Wagner, H. J. (2022). Digitale Fabrikation: Was bringt uns die Zukunft? In 2. Internationaler Kongress Holzbau: Technik+Wirtschaft (HTW) (pp. 91--102). FORUM HOLZBAU.
2021
- Aicher, S., Zisi, N., & Simon, K. (2021). Screw-gluing of ribbed timber elements – Effects of screw spacing and plate stiffness on bond line cramping pressure. In Otto Graf Journal (Vol. 20, pp. 9–38). Otto-Graf-Institute (FMPA), University of Stuttgart. https://www.mpa.uni-stuttgart.de/institut/publikationen/otto-graf-journal/
- Claus, M., Tapia, C., & Aicher, S. (2021). Bond line characteristics of new edge connections of cross-laminated timber in the weak direction based on milled profiled connection plates from laminated veneer lumber made of beech. Otto Graf Journal, 20, 39--60.
2020
- Stimpfle, L. (2020). Skalierbarer Stützen-Decken-Anschluss mit eingeklebten Furnierschichtholz-Verstärkungen für mehrgeschossige Holzbauten --- Detaillierung, Berechnung, Versuche.
- Tapia, C., Stimpfle, L., & Aicher, S. (2020). A new column-to-slab connection for multi-storey timber buildings. Otto Graf Journal, 19, 297--317.
DATA SETS
2024
- Krtschil, A., Orozco, L., Shah, A., Chen, T.-Y., Menges, A., & Knippers, J. (2024). Replication Data for: Structural development of a novel punctually supported timber building system for multi-storey construction : Experimental Data: Tension Tests of the Edge Connection. https://doi.org/10.18419/darus-4166
- Müller, T., Krtschil, A., & Leistner, P. (2024). Replication Data for: Structural and acoustic behavior of a timber slab with wooden tuned mass dampers. DaRUS. https://doi.org/10.18419/darus-3995
- Orozco, L., Krtschil, A., Skoury, L., Knippers, J., & Menges, A. (2024). Reinforcement Arrangement Data. DaRUS. https://doi.org/10.18419/darus-4181
- Orozco, L., Siriwardena, L., & Menges, A. (2024). ABxM.MultiStorey.Columns: Agent-based Column Arrangement for Multi-Storey Structures. DaRUS. https://doi.org/10.18419/darus-4171
- Orozco, L., Skoury, L., & Menges, A. (2024). Multi-Level, Multi-Agent Timber Slab Design Method Proof of Concept. DaRUS. https://doi.org/10.18419/darus-4170
- Udaykumar, K., Orozco, L., Krtschil, A., Menges, A., & Knippers, J. (2024). Timber Column Slab Solver. DaRUS. https://doi.org/10.18419/darus-4172
2023
- Orozco, L., Krtschil, A., Wagner, H.-J., Knippers, J., & Menges, A. (2023). Floor Plate Segmentation Data. DaRUS. https://doi.org/10.18419/darus-3539
- Tapia Camu, C. A., & Aicher, S. (2023). Replication Data for: A new concept for column-to-column connections for multi-storey timber buildings - Numerical and experimental investigations. DaRUS. https://doi.org/10.18419/darus-3318
2022
- Abdelaal, M., Schiele, N. D., Angerbauer, K., Kurzhals, K., Sedlmair, M., & Weiskopf, D. (2022). Supplemental Materials for: Comparative Evaluation of Bipartite, Node-Link, and Matrix-Based Network Representations. DaRUS. https://doi.org/10.18419/DARUS-3100
- Nguyen, L., Schwinn, T., Groenewolt, A., Maierhofer, M., Zorn, M. B., Stieler, D., Siriwardena, L., Kannenberg, F., & Menges, A. (2022). ABxM.Core: The Core Libraries of the ABxM Framework. https://doi.org/10.18419/darus-2994
- Orozco, L., Svatoš-Ražnjević, H., & Menges, A. (2022). Stakeholders in Multi-storey Timber Data: 540 Design and Construction Players of 300 Mass-Timber Projects from 2000-2021. DaRUS. https://doi.org/10.18419/DARUS-2740
- Tapia Camu, C. A., & Claus, M. (2022). Replication Models for: A finger-joint based edge connection for the weak direction of CLT plates. https://doi.org/10.18419/darus-1259
2021
- Tapia Camú, C., & Claus, M. (2021). Experimental data for: A finger-joint based edge connection for the weak direction of CLT plates. DaRUS. https://doi.org/10.18419/darus-1344
- Tapia Camú, C., Claus, M., & Aicher, S. (2021). Replication Data for: Bond line characteristics of a new screw-glued edge connection for the secondary load-bearing direction of CLT plates. https://doi.org/10.18419/darus-2153